

SE07

1

A Sampler of Code Techniques
Ian Whitlock, Westat, Rockville, MD

Abstract

Several short coding examples will be presented. The
examples include a problem in updating a master file, the
use of the ODS OUTPUT statement to build a control data
set for the selection of a set of random samples, the use of
NAMED INPUT, and some macro examples. Principles of
simplicity, maintainability, and reuse will be emphasized.

The examples are suitable to a wide range of programming
experience. They require only base SAS and are operating
system independent except for file definitions.

Named Input

Although it is documented, named input is one of the better
kept secrets of the INPUT statement. The problem is that
the examples do not reveal why one might want the tool.
SAS goes into named input mode whenever it finds a
variable name followed by an equal sign in an INPUT
statement. In this mode the record is searched for each
variable in the Program Data Vector (PDV), i.e., the
memory area of the DATA step.

The online documentation for version 8 indicates that once
you enter named INPUT mode, you should list any
variables not yet picked up in the form variable=. Whether
that is true or not depends on how the PDV is defined. For
example,

data w ;
 retain x y ;
 input x= ;
cards ;
x=1 y=2
;

produces an error message because the type of Y has not
been determined. While

data w ;
 length y 8 ;
 input x= ;
cards ;
x=1 y=2
;

produces just an uninitialized message. And

data w ;
 retain x y .;
 input x= ;
cards ;
x=1 y=2
;

produces no indications in the log that anything is
questionable. Of course, when Y does not appear on a
record, the currently retained value of Y is used.

If an informat is to be used then it should be specified in an
INFORMAT statement or with the colon modifier to avoid
the danger of running into the next variable.

Should one retain the named input variables? One
advantage is that when the following observation has the
same value for a variable, then that variable may be
omitted on the corresponding input record. On the other
hand one must be careful to use this feature wisely.

Another thing that you should know is that the "/" may be
used to tell SAS to continue to the next record for the same
observation. I generally add a dummy character variable
END with the value "*" to make the end of each record
stand out. For example,

data w (drop = end);
 retain x y .;
 input x= ;
cards ;
x=1 /
y=2 /
end=*
;

produces just one observation.

These features make named input very handy for hand
tailored test data. Suppose the real data has 50 variables,
but each test case needs only a few of those variables.
List, column, and formatted input would require wide
records with little help as to what values go with what
variables. With named input one can easily see what
value goes with what variable and omit any variables that
do not matter. The "/" allows the physical records to fit on
a screen. Typically, in addition to the END variable I
added a character variable NOTE indicating why the
record is needed. This helps in looking at a print when
verifying that each case came out as predicted.

SE07

2

UPDATE

Another thing that named input is useful for is constructing
transactions for updating a file. Here it is important to
know about the UPDATE statement and how it works.
UPDATE takes the form

update master trans ;
by id ;

Here MASTER is the SAS data set to be updated and
TRANS is the data set indicating the new values. The
variable (could be multiple variables) ID is the key to a
unique observation in MASTER so that it's value can
indicate exactly which observation to change. On the other
hand, there many be many observations with the same ID
in TRANS. The changes indicated are applied one
observation after another for the single corresponding
MASTER observation. The standard missing value in
TRANS indicates that the value in MASTER is not to be
changed. Consequently only the ID and changed variables
need be named. Note that it was a rather similar situation
that made named input good for constructing test data.

Here is a simple example. Suppose that MASTER has the
variable FIRSTNAME, LASTNAME, and
MARITAL_STATUS. Now consider:

data stdtrans ;
 length id $5
 firstname $20
 lastname $ 30
 marital_status $ 1
 ;
 input (id firstname lastname
 marital_status) (=) ;
cards ;
id=00001 firstname=John
id=00002 lastname=Smith
id=00002 marital_status=M
;
data new_master ;
 update old_master stdtrans;
 by id ;
run ;

In the previous example, the transactions came from an
external data set. Now suppose we have the transaction
data in the form of a SAS data set, TRANS, containing the
variables ID, VARNAME, and VALUE. How can one use it
with the UPDATE statement? Here TRANS has to be
converted into the standard form. This can be done in a
two step process to write a file suitable for reading with
named input and then a step to do the reading.

filename temp temp ;
data _null_ ;

 set trans ;
 file temp lrecl = 32767 ;
 put id= varname "=" value ;
run ;

data stdtrans ;
 length ;
 infile temp recl=32767 ;
 input id= ;
run ;

STDTRANS is now ready to use in an update step similar
to the one previously shown.

The FILENAME statement uses the TEMP option to write
to the work directory. SAS generates the filename and
cleans up when SAS is exited.

In the above steps LRECL was set large enough to
accommodate many variables. In practice there is little
problem with giving a large LRECL and not using a lot of it.

MERGE

Let's take a moment to consider the MERGE statement.
Two simple rules avoid a great many problems with
merges.

Never allow a variable in common between the data
sets in a merge other than the BY variables.

Never allow more than one of the data sets in a merge
to have multiple observations for the BY group.

Assuming the corresponding BY-variables have common
characteristics, the first rule guarantees that the data sets
in the merge can appear in any order. Hence the code is
more stable when changes are introduced, and you don't
have to worry about one variable overwriting another.

Many SAS programmers argue with the first rule, but when
pressed to give an example where they must violate it,
they usually offer the update situation described above or
an example of interleaving, which is better done with a
SET statement. In other words, the violations come from
failing to know which form of SAS input to use.

Violation of the second principle is so bad that SAS writes
a note to the log. Why isn't it an error? SAS was designed
to do a one-to-one merge within the BY-group, so it isn't a
error, but it is rarely right to do so, and can appear to
manufacture data when an unwary person sees the
resulting output. Remember that in a merge data is
retained in the BY-group. Hence a value on a short group
will carry over to other records when the group in the other
file is longer. Another problem is that the records are

SE07

3

simply matched one-to-one within the BY-group and there
may be no basis for that particular match.

ODS OUTPUT

While working on a project, I was asked for each variable
to draw a sample of observations where the sample size
was to be 2% of the observations with positive values.
Since the variables might change over time and the data
certainly would, I wanted to start with a list of variables and
determine the count of positive values for each variable
rather than read frequency reports and modify the program
based on the counts.

The first step in this process is to realize that the problem
contains a clear cut sub-problem. Make a SAS data set
containing the variable name, value, and count for the
value. This is a useful service that extends beyond the
boundaries of the original problem, hence I could write a
the general macro independent of the project to supply the
control data I needed for my project.

In the past I had written some macros of this sort, using the
OUT= option of the TABLE statement, but I considered
such a plan rather ugly. One has to worry about data type,
getting the name of the variable and the associated format
to obtain the formatted values. Could the ODS OUTPUT
statement produce a simpler macro?

Unfortunately the data set output by ODS violates an
important database principle - do not store data information
in the names of the variables. ODS uses the variable
name to hold the value, rather than a common name like
VALUE. This means that the name of this column changes
with each variable, so that one cannot simply concatenate
the tables. In the same manner, the name of the column
holding the formatted value is of the form F_var, where var
is the name of the variable. Consequently, not much work
is saved, in combining these tables, but this method does
save the need to do the formatting and hence considering
the type of each variable.

First let's consider an example with one variable
INCOME_CAT. Here is the code.

ods listing close ;
ods output onewayfreqs(match_all) =
 __fq1(keep= table f_: frequency) ;
 proc freq data = study ;
 table income_cat / missing ;
 format income_cat inc. ;
 run ;
ods listing ;
ods output close ;

It produces the data set __FQ1 with the variables TABLE
holding the name of the variable, F_INCOME_CAT holding
the formatted values (always character) of INCOME_CAT
and FREQUENCY giving the count.

Now with more variables there will be more tables, __FQ1,
__FQ2, etc. All of these data sets can all be read with one
monster SET statement. Then the separate F_-variables
can be combined into one with a SELECT block on an IN=
variable.

One problem that occurs with multiple variables is that the
size of the formatted values can change from table to
table, hence it is necessary to calculate the longest such
variable and assign that length to the new variable holding
all formatted values of all the variables in the TABLE
statement.

Here is the finished complete code in an extended version.

/* FreqOut.sas - create file
 (variable,value,frequency)
*/
%macro FreqOut
 (data=&syslast /* input dataset name*/
 ,out=freqout /* output dataset name*/
 ,vars= /* list of variables */
 ,by= /* list of by variables*/
 ,fmtassign= /* var fmt var var fmt..*/
 /* . to override formats*/
 ,debugging=NO /* YES or NO */
) ;

 %let data = &data ; /* force eval */

 %local
 i /* looping variable */
 nv /* number of variables */
 ng /* number of by groups */
 svnotes /* option value for notes*/
 svmprint /* option mprint value */
 ;

 /* check for missing parameter */
 %if %length(&vars) = 0 %then
 %do ;
 %put ERROR(&sysmacroname): No
variables to process - halting ;
 %goto mexit ;
 %end ;

 /* save original option settings */
 %if %upcase(&debugging) ^= YES %then
 %do ;
 %let svnotes =
 %sysfunc(getoption(notes));

SE07

4

 %let svmprint =
 %sysfunc(getoption(mprint));
 options nonotes nomprint ;
 %end ;

 %if &fmtassign = . %then
 %let fmtassign = &vars ;

 /* get number of variables in &vars */
 %let vars = %sysfunc(compbl(&vars)) ;
 %let nv = %length (&vars)
 -%length(%sysfunc(compress(&vars)))
 + 1 ;
 %let nv = %eval (&nv) ;

 /* get number of by-group values */
 %if %length(&by) = 0 %then
 %let ng = 1 ;
 %else
 %do ;
 /* calculate number of
 by-group values
 */
 data _null_ ;
 if __eof then
 call symput("ng"
 ,put(__ng, 5. -l)) ;
 set &data end = __eof ;
 by &by ;
 if first.%scan(&by,-1) then
 __ng + 1 ;
 run ;
 %end ;

 /* make the frequency tables */
 ods listing close ;
 ods output onewayfreqs(match_all) =
 __fq1(keep= &by table f_: frequency);
 proc freq data = &data ;
 %if %length (&by) > 0 %then
 %do ; by &by ; %end ;
 table &vars / missing ;
 %if %length (&fmtassign) > 0 %then
 %do ; format &fmtassign ; %end ;
 run ;
 ods listing ;
 ods output close ;

 /* get the longest fomatted length */
 proc sql noprint ;
 select max(length) into :maxlen
 from dictionary.columns
 where libname = "WORK"
 and substr(memname,1,4) = "__FQ"

 and substr(upcase(name),1,2)="F_"
 ;
 quit ;

 /* --------------------------------
 make the final data set

 */
 data &out (keep = &by Variable Value
 Frequency) ;
 set
 %do i = 1 %to &ng*&nv ;
 __fq&i(rename=(table=Variable))
 %end ;
 ;

 length Variable $ 32
 Value $ &maxlen ;

 select ;
 %do i = 1 %to &nv ;
 when (upcase(Variable) =
 "%upcase(%scan(&vars, &i))"
) Value =
 left(f_%scan(&vars,&i));
 %end ;
 otherwise error ;
 end ;
 run ;

 %if %upcase(&debugging) ^= YES %then
 %do ;
 proc sql ;
 %do i = 1 %to &ng*&nv ;
 drop table __fq&i ;
 %end ;
 quit ;
 options &svnotes &svmprint ;
 %end ;

%mexit:
%mend FreqOut ;

Let's look at some features to note. First the parameters
are keyword parameters. This means that the code to call
the macro will be a little easier to read with having a copy
of the macro in front of you, since the parameter names
have been chosen to reflect their meaning and will appear
in the calling code. Note the comments that go with each
parameter so that the macro header almost documents
how the macro is to be used.

The DATA parameter has the default value &SYSLAST.
This takes a little understanding. Remember that no
macro instructions are executed between the %MACRO

SE07

5

statement and the %MEND statement. Hence &SYSLAST
is not evaluated when the macro is compiled. Instead, the
instruction to reference the automatic variable SYSLAST is
stored. This means that latter in the program when DATA
is referenced, the last created SAS data set will replace the
reference. This is a good idea, since it preserves the SAS
default way of working, but it would be unfortunate if
someone happened to place a step at the top of the macro
creating a new data set, which would then take the place of
the one that the caller had in mind when using the default.
Thus it is almost obligatory to force the evaluation of
SYSLAST at the top of the macro with:

%let data = &data ; /* force eval */

This removes the reference to SYSLAST and fixes the
value of DATA with the correct data set name.

The default value for FMTASSIGN is empty. This means
that by default any previously assigned formats will be
used in the PROC FREQ. However the consumer of the
macro can override the formats with temporary ones if he
desires to do so. This raises the question of how simply
cancel the format assignments. This is done with the
missing dot and the code:

%if &fmtassign = . %then
 %let fmtassign = &vars ;

Now the macro can generate the correct format
assignment for PROC FORMAT.

Note that the VARS parameter is refused when left empty,
in contrast to the handling of the FMTASSIGN parameter.
Why? Because we need the explicit list of variables here.
If one wanted more protection one could code checks for
ALL, _NUMERIC_, _CHARACTER_ and the list
symbols, "-" and ":". However, I chose not to do so.

NV, the number of variables in the VAR parameter is
calculated using the COMPBL and COMPRESS DATA
step function. How do we count words in a space
separated list of words? Standardize to one space
between each word, then count the spaces and add one
because there is one more word than spaces. What about
no words? Well we already eliminated that possibility in
the parameter checking.

The DATA step functions are executed using the macro
function %SYSFUNC. The COMPESS is used to remove
blanks. Now we can bind the number of blanks by
comparing the lengths of the list of words with one blank
between each word and the list with no blanks. This forms
a very fast and efficient method of counting the elements in
a space separated list, because all of the looping normally
required has been shoved down to the function level.

Note the declaration of all local variables. This makes the
code easier to read and guarantees the consumer that
none of his macro variables will ever be changed as a side
effect of calling the macro. Again the comments for each
variable help the reader to see how the local variable will
be used in the macro.

The block of code:

%if %upcase(&debugging) ^= YES %then
 %do ;
 %let svnotes =
 %sysfunc(getoption(notes));
 %let svmprint =
 %sysfunc(getoption(mprint));
 options nonotes nomprint ;
 %end ;

raises an interesting question because it represents a
common problem often faced by the macro programmer.
The macro needs to store a small number of option
settings that will be changed to meet the requirements of
the macro, so that the original values can be restored.
Now imagine that we had a macro OPTLIST (LIST) that
would return a list of settings for restoring the original
values. In this case, the code would reduce to the
following.

%let optlist = notes mprint ;

...
%let svopts = %optlist (&optlist) ;
...
options &svopts ;

I leave it to you as a practice problem to work out the
details of how you will loop through the list of options and
concatenate the results for the final return value. The one
hint you may need to know is that GETOPTIONS has a
second argument. When the value is "KEYWORD" the
function returns with a value suitable for direct use in an
OPTIONS statement. For example, given LINESIZE, the
function would return LINESIZE=number, and given
MPRINT, it might return NOMPRINT.

The next block of code assigns NG the number of BY-
group values. This is needed later when we combine all of
the frequency data sets. If BY parameter is empty then the
whole file is one BY-group. Otherwise we have to count
them.

I assumed that if consumer assigns a value to the BY
parameter, then he knows that the input data set is sorted
in that order. Hence I can use a DATA step to increment
by one at the beginning of each BY-group. A relatively
new feature of the %SCAN function is to search backward
by using negative numbers, hence

SE07

6

%scan(&by,-1)

finds the last variable listed in the BY parameter. The test
for end-of-file is placed at the top of the step as cheap
insurance against someone later adding some for of
subsetting to this step and subsetting away the last record.

Note that this step follows the simple rule that any data
variable created by the macro on a temporary basis will
have a name beginning with a double underscore. This
means that if the consuming code never creates data
variables beginning with a double underscore, then there
will never be any variable name clashes between the
users' names and the macro author's names. (Macro
variable name clashes have already been avoided by
always declaring all variable local unless the macro has
been given specific permission to use the variable.)

The ODS step has already been explained before the
macro was presented.

As explained in the paragraph preceding the macro, we
need to know the longest formatted value in the frequency
tables in order to insure that none of these values will be
truncated when we combine all of the frequency tables and
reduce the set of formatted value variables to one variable
called VALUE. To do this we use the SQL dictionary file,
DICTIONARY.COLUMNS to look at the lengths and obtain
the longest one. This value is then exported to macro
variable, MAXLEN, using the INTO operator.

We now have all the pieces in place for the final DATA
step to create the output data set.

Basically it is a very simple step consisting of three parts -
the SET statement combining the frequency tables, a
LENGTH statement to assign the length of VALUE, and a
SELECT block to decide which variable to use in assigning
VALUE the correct formatted value. The OUTPUT is by
default at the bottom of the step.

How many data sets are to be combined? If there is no
BY-processing then the one data set for each variable and
that number is &NV. With BY-processing we have to
multiply by &NG, the number of BY-groups. When there is
no BY-processing we assigned NG the value one, so now
we can just multiply. Why is no %EVAL needed?
Because %EVAL is automatically called by the macro
facility in all places where a number is expected.

So now we have a finished macro serving a useful
function.

Conclusion

We have looked at some of the features of named input.
When you understand how the named input works, it can

be surprisingly handy for some special tasks. We took a
quick look at the MERGE statement and some common
rules that one rarely sees, but are responsible for avoiding
a great many of the problems SAS programmers fall into
when doing merges. Finally we took a detailed look at the
construction of an interesting macro to see how one should
think about developing a macro and what problems should
be considered.

Contact Information

Ian Whitlock

Westat

1650 Research Boulevard

Rockville, MD 20850

IanWhitlock@westat.com

Disclaimer: The contents of this paper is the work of the
author and does not necessarily represent the opinions,
recommendations, or practices of Westat.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration

